124 research outputs found

    トクシマケン ノ ミンゾク ケンキュウ ト ソノ キョウザイカ ノ ココロミ コウ ノ キキトリ オ トオシテ

    Get PDF
    今「ふるさと」を見直す作業が,各地域や学校で行われている。居住している町や村に,古くから伝わっている文化や生活の様子を理解するだけでなく,先人の智恵や工夫を学ぼうとする姿勢からである。この論文では実際に講の実態を聞き取り調査をし,整理をして検証するとともに,それを教材にする試みをした。これは柳田の提唱する「教育の実際化」に他ならず,これからの教育にも不可欠なものと考える。Recently we start to rediscover the own village in many areas and schools. In addition to understanding of the traditional cultures and life-styles, we try to learn our ancestor\u27s wits and ideas. In this paper, I did the fact-finding on the spot about the actual condition of a village\u27s "Kou" and instected. After that I made a trial of the teaching materials. This is connected with the essence of school education that Mr. Yanagita advocates. I think that it is indispensable to the school education of the future.国立情報学研究所『研究紀要公開支援事業』により電子化

    The Synthetic Curcumin Analogue GO-Y030 Effectively Suppresses the Development of Pressure Overload-induced Heart Failure in Mice

    Get PDF
    Curcumin is a naturally occurring p300-histone acetyltransferase (p300-HAT) inhibitor that suppresses cardiomyocyte hypertrophy and the development of heart failure in experimental animal models. To enhance the therapeutic potential of curcumin against heart failure, we produced a series of synthetic curcumin analogues and investigated their inhibitory activity against p300-HAT. The compound with the strongest activity was further evaluated to determine its effects on cardiomyocyte hypertrophy and pressure overload-induced heart failure in mice. We synthesised five synthetic curcumin analogues and found that a compound we have named GO-Y030 most strongly inhibited p300-HAT activity. Furthermore, 1 μM GO-Y030, in a manner equivalent to 10 µM curcumin, suppressed phenylephrine-induced hypertrophic responses in cultured cardiomyocytes. In mice undergoing transverse aortic constriction surgery, administration of GO-Y030 at a mere 1% of an equivalently-effective dose of curcumin significantly attenuated cardiac hypertrophy and systolic dysfunction. In addition, this low dose of GO-Y030 almost completely blocked histone H3K9 acetylation and eliminated left ventricular fibrosis. A low dose of the synthetic curcumin analogue GO-Y030 effectively inhibits p300-HAT activity and markedly suppresses the development of heart failure in mice

    Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge

    Get PDF
    Supercritical fluid extraction (SFE) was used in the analysis of bacterial respiratory quinone (RQ), bacterial phospholipid fatty acid (PLFA), and archaeal phospholipid ether lipid (PLEL) from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC). Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS). The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v) of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile

    Transcript Annotation in FANTOM3: Mouse Gene Catalog Based on Physical cDNAs

    Get PDF
    The international FANTOM consortium aims to produce a comprehensive picture of the mammalian transcriptome, based upon an extensive cDNA collection and functional annotation of full-length enriched cDNAs. The previous dataset, FANTOM2, comprised 60,770 full-length enriched cDNAs. Functional annotation revealed that this cDNA dataset contained only about half of the estimated number of mouse protein-coding genes, indicating that a number of cDNAs still remained to be collected and identified. To pursue the complete gene catalog that covers all predicted mouse genes, cloning and sequencing of full-length enriched cDNAs has been continued since FANTOM2. In FANTOM3, 42,031 newly isolated cDNAs were subjected to functional annotation, and the annotation of 4,347 FANTOM2 cDNAs was updated. To accomplish accurate functional annotation, we improved our automated annotation pipeline by introducing new coding sequence prediction programs and developed a Web-based annotation interface for simplifying the annotation procedures to reduce manual annotation errors. Automated coding sequence and function prediction was followed with manual curation and review by expert curators. A total of 102,801 full-length enriched mouse cDNAs were annotated. Out of 102,801 transcripts, 56,722 were functionally annotated as protein coding (including partial or truncated transcripts), providing to our knowledge the greatest current coverage of the mouse proteome by full-length cDNAs. The total number of distinct non-protein-coding transcripts increased to 34,030. The FANTOM3 annotation system, consisting of automated computational prediction, manual curation, and final expert curation, facilitated the comprehensive characterization of the mouse transcriptome, and could be applied to the transcriptomes of other species

    The Synthetic Curcumin Analogue GO-Y030 Effectively Suppresses the Development of Pressure Overload-induced Heart Failure in Mice

    Get PDF
    Curcumin is a naturally occurring p300-histone acetyltransferase (p300-HAT) inhibitor that suppresses cardiomyocyte hypertrophy and the development of heart failure in experimental animal models. To enhance the therapeutic potential of curcumin against heart failure, we produced a series of synthetic curcumin analogues and investigated their inhibitory activity against p300-HAT. The compound with the strongest activity was further evaluated to determine its effects on cardiomyocyte hypertrophy and pressure overload-induced heart failure in mice. We synthesised five synthetic curcumin analogues and found that a compound we have named GO-Y030 most strongly inhibited p300-HAT activity. Furthermore, 1 μM GO-Y030, in a manner equivalent to 10 µM curcumin, suppressed phenylephrine-induced hypertrophic responses in cultured cardiomyocytes. In mice undergoing transverse aortic constriction surgery, administration of GO-Y030 at a mere 1% of an equivalently-effective dose of curcumin significantly attenuated cardiac hypertrophy and systolic dysfunction. In addition, this low dose of GO-Y030 almost completely blocked histone H3K9 acetylation and eliminated left ventricular fibrosis. A low dose of the synthetic curcumin analogue GO-Y030 effectively inhibits p300-HAT activity and markedly suppresses the development of heart failure in mice

    Comparative Proteomic Analysis of Methanothermobacter themautotrophicus ΔH in Pure Culture and in Co-Culture with a Butyrate-Oxidizing Bacterium

    Get PDF
    To understand the physiological basis of methanogenic archaea living on interspecies H2 transfer, the protein expression of a hydrogenotrophic methanogen, Methanothermobacter thermautotrophicus strain ΔH, was investigated in both pure culture and syntrophic coculture with an anaerobic butyrate oxidizer Syntrophothermus lipocalidus strain TGB-C1 as an H2 supplier. Comparative proteomic analysis showed that global protein expression of methanogen cells in the model coculture was substantially different from that of pure cultured cells. In brief, in syntrophic coculture, although methanogenesis-driven energy generation appeared to be maintained by shifting the pathway to the alternative methyl coenzyme M reductase isozyme I and cofactor F420-dependent process, the machinery proteins involved in carbon fixation, amino acid synthesis, and RNA/DNA metabolisms tended to be down-regulated, indicating restrained cell growth rather than vigorous proliferation. In addition, our proteome analysis revealed that α subunits of proteasome were differentially acetylated between the two culture conditions. Since the relevant modification has been suspected to regulate proteolytic activity of the proteasome, the global protein turnover rate could be controlled under syntrophic growth conditions. To our knowledge, the present study is the first report on N-acetylation of proteasome subunits in methanogenic archaea. These results clearly indicated that physiological adaptation of hydrogenotrophic methanogens to syntrophic growth is more complicated than that of hitherto proposed

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore